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ABSTRACT
Inter-node networks are a key capability of High-Performance
Computing (HPC) systems that differentiates them from less
capable classes of machines. However, in spite of their very
high performance, the increasing computational power of
HPC compute nodes and the associated rise in application
communication needs make network performance a common
performance bottleneck. To achieve high performance in
spite of network limitations application developers require
tools to measure their applications’ network utilization and
inform them about how the network’s communication ca-
pacity relates to the performance of their applications.

This paper presents a new performance measurement and
analysis methodology based on empirical measurements of
network behavior. Our approach uses two benchmarks that
inject extra network communication. The first probes the
fraction of the network that is utilized by a software compo-
nent (an application or an individual task) to determine the
existence and severity of network contention. The second ag-
gressively injects network traffic while a software component
runs to evaluate its performance on less capable networks or
when it shares the network with other software components.
We then combine the information from the two types of ex-
periment to predict the performance slowdown experienced
by multiple software components (e.g. multiple processes of
a single MPI application) when they share a single network.
Our methodology is applied to individual network switches
and demonstrated on two real systems with different types
of switches and compute node architectures.

1. INTRODUCTION
HPC applications demand very capable communication net-
works to support their high message and data volumes and/or
tight synchronizations. Indeed, constraints on available net-
work bandwidth or latency as well as network hotspots in-
duced by specific communication patterns are often the key
bottleneck that limit application performance [15, 2]. Look-
ing into the future, it is expected that the computational

capabilities of individual computing nodes will continue to
rise faster than the capabilities of the networks that connect
them [10]. This means that application performance will be-
come increasingly bottlenecked on the capabilities of the net-
work, making it even more imperative for application devel-
opers to optimize their applications taking network perfor-
mance into account. Specifically, developers will need to (i)
predict how their applications will perform on future systems
with poorer network-to-node performance ratios and (ii) de-
velop ways to assign computing work to available resources
to effectively balance network communication and on-node
computation. To achieve these tasks developers will require
powerful tools to enable them to understand the interac-
tions between their applications and the networks they run
on and how these interactions ultimately affect application
performance. Specifically, two directions of this interaction
will need to be quantified for developers. First, tools must
quantify how the application’s communication utilizes the
network and whether the application’s needs are approach-
ing the limits of the network’s capabilities. Second, tools
must measure how the capabilities of the network influence
application performance and most importantly, whether the
network is the application’s performance bottleneck. These
analyses must apply to both current and future systems, as
well as to both static and highly configurable applications
(e.g. where the space of possible configurations is too large
to be explicitly enumerated and analyzed).

This paper presents a novel measurement-based approach to
answer these questions. Unlike prior work based on simu-
lation or tracing, our approach (i) experimentally measures
an application’s network use, (ii) quantifies it in terms of a
simple metric based on resource utilization and (iii) iden-
tifies the relationship between available network capability
and application performance. Given such measurements of
multiple software components, such as full applications or
their individual tasks, it is possible to predict how much
their performance will degrade when they are executed on
a less capable network (e.g. on a possible Exascale sys-
tem), or concurrently on the same network where they con-
tend for resources. This paper focuses on analyzing individ-
ual network switches and the compute nodes connected to
them. We evaluate our approach on two different Infiband
switches (QLogic and Voltaire) and compute node architec-
tures (Xeon and Opteron).

The importance of network performance optimization has
motivated significant research by the performance analysis



community. It can be divided into two categories: simula-
tion and indirect measurement. The simulation approach,
exemplified by tools such as SST [13], BigSim [20], Dimemas [12]
or Venus [14] uses a detailed model of network hardware to
account for the path of every message sent by each applica-
tion node. Although these tools can accurately predict the
performance of a particular application configuration on a
particular network design, they have two limitations. First,
the cost of using them can be high for many realistic large-
scale applications since a full analysis requires (i) a large-
scale application run where the details of its communication
are stored in the parallel file system, followed by (ii) a de-
tailed simulation of its communication. This is too slow to
use for live application runs, although feasible for making
projections to future systems.

Second, each simulation is valid for only one application con-
figuration. To predict performance for a different assign-
ment of application tasks to nodes or different distributions
of work to tasks it is necessary to perform a simulation for
this specific configuration. Since the space of possible per-
mutations grows exponentially with the number of ways to
configure the allocation of work to compute nodes, the sim-
ulation approach soon grows infeasible.

The indirect measurement approach is exemplified by trac-
ing tools such as Vampir [9] and Paraver [11] as well as
performance counter-based tools such as Tau [16]. In this
approach various application regions are monitored to de-
termine its communication structure, the amount of time
it spends performing various operations and the number of
events such as cache misses that occur during each opera-
tion. While these measurements directly capture ultimate
application slowdowns as well as low-level hardware met-
rics, they can only enable indirect inference about how the
properties of a network relate to application performance.
For example, although such techniques can accurately mea-
sure the time from a message being sent to the time it is
received, this time includes the cost of transferring the data
from processor memory to the network card, the cost of
network communication, the time the message spends wait-
ing for the receiver node to post a receive buffer, etc. Using
such inclusive measurements to infer key information such as
network contention inherently loses accuracy. Further, this
approach cannot be used to predict application performance
on an alternate network or to predict how much contention
for the network by multiple software components can affect
their performance.

2. APPROACH
This paper presents a new approach to measure the rela-
tionship between network capability and application perfor-
mance. Our basic insight is that this relationship should be
modeled as the application consuming a resource provided
by the network. As more of this resource is available, the ap-
plication runs monotonically faster, with reduced improve-
ments as application performance becomes bottlenecked on
other resources. Further, if multiple software components
(entire applications or individual tasks such as processes,
threads or Charm++ chares [7])) run concurrently on the
same network, they will share its resources. This sharing
can be modeled as one component consuming some amount
of network resources, making it unavailable to others and

thus causing them to behave as if they were running on
a less capable network. The heart of this idea is a “per-
formance relativity” principle, that “from the perspective of
software components less capable networks behave very simi-
larly to networks that are partially utilized by other software
components”. This principle enables two novel measurement
techniques that can answer the above questions:

Impact experiments measure a software component’s use
of the network based on the latency of additional messages
sent over the network while the component runs. These mea-
surements directly quantify the network’s ability to carry
application communication and can be used to determine
whether the network is congested and measure how close the
application is to fully utilizing the network. The additional
messages are triggered by extra tasks running on dedicated
cores and they do not impact applications’ performance as
the extra load is very low.

Compression experiments measure the relationship be-
tween network capability and a software component’s per-
formance. The component is executed concurrently with a
micro-benchmark that runs on cores connected to the same
network and sends varying volumes of communication. As
the effective network capability is varied we observe the com-
ponent’s resulting performance, which corresponds to how it
will perform on less capable networks or when more software
component are executed on the same network.

Finally we present a technique that combines the two mea-
surements to predict the performance degradation that a
given combination of software components would suffer when
executed concurrently on the same network. It is based on
a common metric that quantifies available network capabil-
ity by modeling the network as a mathematical queue [18]
and using data from Impact measurements to compute the
fraction of the queue that is utilized. By measuring the
network capability that is left available while a given appli-
cation or the Compression benchmark executes we can esti-
mate the effect of multiple concurrent software components
on each other as they share a network. The experimental
and analytic procedures presented in this paper are focused
on single-switch networks that connect multiple computing
nodes.

Our approach improves upon the state of the art in net-
work performance modeling and measurement in the follow-
ing ways:

i) Impact experiments of network utilization and contention
are significantly faster than similar analyses performed in-
side simulators and apply to real physical networks for which
precise models may not exist due to intellectual property re-
strictions. Further, unlike indirect measurement techniques,
Impact experiments directly probe the network’s ability to
carry out the application’s communication requests. Since
they focus on just the network and quantify its effective ca-
pabilities in terms of a generic queue-oriented metric, these
experiments provide a simple and unfiltered view onto this
resource.

ii) Compression experiments and Performance Degradation
analysis make it possible to relate application performance



to network capability. While simulators can predict the per-
formance of specific workloads on specific networks, a sep-
arate simulation run is required for each configuration. As
the number of configuration options increases (e.g. number
of atoms per core or the assignment of software components
to different cores), the number of such experiments rises ex-
ponentially. In contrast, our approach scales linearly with
the number of software components that must be measured
independently.

iii) Our techniques are enabled by a new queue-oriented met-
ric for measuring network utilization. This metric has the
key property of varying monotonically with the utilization of
the physical network as well as with the resulting application
performance.

This paper is structured as follows: Section 3 presents the
experimental setup used and briefly describes the set of ap-
plications we use in our experiments. Section 4 describes
Impact measurements and how they can be used to feed an
analytical model based on queue theory. Section 5 describes
Compression measurements, details how they Interact with
impact measurements and shows the performance analyses
they enable for real applications. Section 6 presents and val-
idates our methodology for predicting performance of real
complex workloads that share the same network switch.

3. EXPERIMENTAL DESIGN
The experiments in this paper were conducted on the Cab
and Hera clusters at the Lawrence Livermore National Lab-
oratory. Cab is composed of 1,296 compute nodes, each of
which includes two 8-core 2.6Ghz Intel Xeon E5-2670 pro-
cessors with 32GB of RAM. Hera has 864 compute nodes,
each one has four 4-core 2.3Ghz AMD Opteron 8356 pro-
cessors with 32GB of RAM. The networks on Cab and Hera
are QLogic Quad-data-rate and Voltaire Double-data-rate
Infiniband, respectively, organized into a two-level fat tree.
This paper focuses on the bottom-level switches of both net-
works. In Cab they are QLogic 12300, with 36 ports, of
which 18 are used to connect compute nodes and 18 connect
to the second-level switch. These switches provide approx-
imately 1µs of network latency and 5GB/s bandwidth. On
Hera they are Voltaire 9024, with 24-port switch, of which 12
connect to compute nodes and 12 to the second-level switch.
They provide approximately 3-5 µ s latency and 2.4 GB/s
bandwidth. Each experiment on Cab and Hera was run on
groups of 18 or 12 nodes, respectively, connected to a sin-
gle bottom-level switch and our results are thus not affected
by interference from other applications running on the same
cluster.

Our experiments focus on the following applications:

MILC [3] - The MIMD Lattice Computation, a Quantum
Chromodynamics simulation with lattice size nx=16,
ny=32, nz=32, nt=36.

FFTW [5] - Fast Fourier Transform library that uses hier-
archical composition of multiple FFT algorithms, ap-
plied to perform a 2D transform of a 2000x2000 matrix.

Lulesh [1] - The Livermore Unstructured Lagrangian Ex-
plicit Shock Hydrodynamics simulation that is a mate-
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Figure 1: Impact Interference

rials science proxy application, executed on a 22x22x22
cube domain.

MCB [4] - A continuous energy Monte Carlo Burnup Sim-
ulation Code for studying nuclear waste transmutation
systems, executed on 3,000,000 particles.

4. IMPACT ANALYSIS
4.1 The Impact benchmark
The basic idea behind Impact experiments is that the degree
to which an application utilizes a network switch can be mea-
sured in terms of how well the network can service additional
communication requests. Application messages are broken
up into multiple small (few KB) packets and sent to the
network switch. As illustrated in Figure 1, packets from one
compute node arrive on one port of the switch, propagate
through its internal circuitry and exit via the port of its des-
tination node. Since the execution time of communication
operations depends on the transit time of each packet, the
distribution of these times captures the network’s effective
capability that is available to applications. Further, when
some software component is already utilizing the network,
the difference between this distribution during the compo-
nent’s execution and the same on an unloaded network mea-
sures the amount of network capability the component uses
up and leaves unavailable to others.

We measure the latency of packets through the network
switch using the simple micro-benchmark listed in Figure 2,
which we denote ImpactB. Compute nodes on the same switch
are paired and execute a ping-pong data exchange where the
process with the even rank sends a message, the process with
the odd rank receives it and replies with another, which is
finally received by the initial process. The entire exchange
is timed by the initiator process to determine the average
latency of the two messages, which are set to be 1KB in
size to ensure that they are communicated via a single net-
work packet. Each ping-pong exchange is separated by a
100ms sleep to minimize ImpactB’s effect on the executing
application.

4.2 Measurements
Figures 3 and 4 shows the distribution of message latencies
observed on Cab and Hera, respectively, both when exe-
cuting ImpactB on an unloaded switch and when ImpactB is
executed concurrently with our target applications. In these
experiments the processes of ImpactB and the target appli-
cation were spread over all the compute nodes connected to



while (1 ) {
i f ( my node%2 == 0 && my node!=n nodes−1 ) {

PMPI Isend ( . . . , ( my rank+task s pe r node )%(n nodes ) , . . . , &reques t ) ;
PMPI Irecv ( . . . , (my rank+task s pe r node )%(n nodes ) , . . . , &reques t2 ) ;

} else i f ( my node%2 == 1 ) {
PMPI Irecv ( . . . , my rank−tasks per node , . . . , &reques t ) ;

PMPI Isend ( . . . , my rank−tasks per node , . . . , &reques t2 ) ;
}
PMPI Wait(&request , s t a tu s ) ;
PMPI Wait(&request2 , s t a tu s ) ;
u s l e ep (100000) ;

}

Figure 2: Pseudo-code of the ImpactB micro-benchmark

the switch. On both Cab and Hera 2 ImpactB processes was
executed on every node. Since Cab’s nodes have 2 sockets,
an ImpactB process was run on each socket. Since Hera’s
nodes have 4 socket, 2 of them were assigned a single Im-
pactB process and the other 2 were assigned none.

The application processes were executed on the remaining
cores. On Cab we executed 4 processes of MILC, FFTW and
MCB on each socket, 8 per node for a total of 144 across all
the 18 nodes connected to a switch. On Hera, we map 2
processes of MILC, FFTW and MCB per socket, 8 per node
for a total of 96 processes across all the 12 nodes on a switch.
On Cab Lulesh, which needs a cubic number of processes,
was run on 16 nodes, utilizing 2 cores on each socket, for
a total of 64 MPI processes. On Hera we ran Lulesh on 8
nodes, mapping 2 processes on each node, 8 per node for a
total of 64 MPI tasks.

The remaining cores were left idle in these experiments. This
assignment of application processes to cores was used to sim-
plify the presentation of the performance prediction experi-
ments in Section 6, which discusses performance prediction
for multiple concurrently-executing applications.

The Cab data shows that when the switch is not loaded,
packet latency is 2.5µs on average, with many packets tak-
ing a little less or more time and a few packets taking sig-
nificantly longer. When the applications are running the
latency distribution shifts. The execution of FFTW and
MCB on Cab shifts 20% of packets from taking approxi-
mately 2.5µs to take more than 5µs. In contrast, the pri-
mary effect of Lulesh and MILC is to shift the mode of the
distribution to the right, close to 5µs. Further, while Lulesh
didn’t cause an increase in the fraction of packets with very
high latency, with MCB this effect was strong.

The results on Hera are notably different. First, the latency
distribution on an unloaded switch is significantly broader.
Whereas most packets on Cab have latency <5µ s, on Hera
fewer than 50% of packets fall into this category. The re-
maining packets cover a range of latencies that is approxi-
mately twice as wide. Interestingly, although FFTW has a
significant impact on packet latency on Cab, it has almost
no impact on Hera’s switches. The other three benchmarks
all shift the mode of the distribution from 2.5µs towards
higher latencies, with MCB moving it to 6µs, MILC to 10µs
and Lulesh to 17µs.

The differences between the two networks are striking and
indeed, since we do not have a simulator for these propri-
etary switches, we do not have a clear explanation for these
differences. Importantly, this lack of deeper insight into net-
work internals, which is the focus of some performance of
some performance analysis techniques, is irrelevant for our
methodology. As we show in Section 6, by using these di-
rect measurements of application behavior on the different
switches we can make quantitative prediction of application
slowdown in different utilization scenarios without knowing
anything about the internal details of the switches or the
applications that use them.

4.3 Queue Theoretic Switch Metric
While packet latency distributions can provide some insight
into the effective capability of the switch, they are too com-
plex to measure switch capability as a resource. This is
because they do not vary monotonically with application
performance since it is not clear whether one distribution
represents more or less network utilization than another (e.g.
compare Lulesh and MCB’s distributions). However, they
can be used to extract the appropriate metric by model-
ing the behavior of a switch as a mathematical queue and
leveraging the results of queueing theory (QT) [18] to infer
the state of this queue based on its observable behavior (the
packet latencies).

QT is a math discipline that studies queues in terms waiting
times and line lengths and has been successfully applied to
model call centers, factories or city traffic. We represent the
real switch as a queue by considering that each packet arrives
at one switch port, is processed by internal switch circuitry
and then departs via another port. As Figure 1 illustrates,
when the packet arrives at this queue other packets may
already be waiting in the queue to be routed, forcing the
packet to wait until these packets are processed. The length
of the queue inside the switch depends on the pattern of
packet arrival times at the switch. We specifically, we use
the M/G/1 queue model to represent switch routing logic.
This model assumes that:

• The size of the queue is unbounded,

• Queue arrival traffic is modeled by a Poisson Pro-
cess [8]: (i) the time between two consecutive events
follows an exponential distribution with parameter λ
and (ii) each inter-arrival time is independent of the
prior ones,
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Figure 4: Packet latency histogram on Hera

• Packet service times are modeled by some probability
distribution, and

• Packets are processed by a single server.

QT defines the utilization of a queue as the proportion of
its entries that are used by the arriving traffic. Utilization ρ
can be expressed as the rate λ

µ
, where λ is the mean rate of

packet arrivals and µ is the mean rate of packet service times.
If ρ ≥ 1 then the queue’s waiting time will grow, which
implies that the switch will be contended and application
performance will degrade significantly. Parameters λ and
µ must be known to measure ρ. µ is a hardware parameter
that is measured by sending multiple individual packets into
an idle switch and measuring their minimum latency. λ is
an application specific parameter that can only be directly
measured by using switch counters, which are not available
in general as they require root privileges. However, λ can
be computed via the the Pollaczek-Khinchine formula [6]:

W =
ρ+ λµV ar(S)

2(µ− λ)
+ µ−1 (1)

Where W is the total average time spent by packets in the
queue either waiting and being serviced and V ar(S) is the
variance of the service times. Since utilization ρ = λ

µ
, we

can write the formula as:

W =

λ
µ

+ λµV ar(S)

2(µ− λ)
+ µ−1 (2)

which can be transformed to compute λ as follows:

λ =
2− 2Wµ

−2W + 2
µ
− µV ar(S)− µ−1

(3)

V ar(S) can be computed from the single-packet experiments
on an idle switch and importantly, W is just the average la-
tency of the packets communicated by ImpactB while the
target application runs. Since utilization ρ = λ

µ
, we can

compute it by using the the above formula given the param-
eters obtained through ImpactB measurements.

Table 1 presents the measured queue utilization of our target
applications. The data shows that none of the applications



FFTW Lulesh MCB MILC

Cab 51% 37% 48% 70%
Hera 82% 38% 40% 61%

Table 1: Application Queue Utilization
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Figure 6: Interference by the CompressionB micro-
benchmark

fully saturate the network, although MILC comes close at
70%. The queue utilization of FFTW and MCB is similar
at 51% and 48%, respectively, just like the packet latency
distributions they induce. However, the queue utilization of
Lulesh is actually lower, at 37% since even though it shifts
the mode of the distribution by a few µs, fewer packets ex-
perience significant delays.

5. COMPRESSION ANALYSIS
5.1 The Compression benchmark
Compression experiments measure the relationship between
the network capability available to a software component
and its performance by incrementally reducing network ca-
pability and observing the effect of this on performance.
Since it is not possible to adjust the properties of real switches
and network simulations are expensive, we use the perfor-
mance relativity principle (reduced network capability af-
fects application performance similarly to resource sharing)
to simulate reduced network capability via software interfer-
ence. We execute the target software component on a subset
of the available cores. On the remaining cores we execute the
CompressionB micro-benchmark, the pseudo-code for which
is listed in Figure 5. CompressionB is executed on the same
number of cores on each node, where processes running on
the same core ID on different nodes are organized in a 1-
dimensional communication ring. As illustrated in Figure 6,
in each iteration every CompressionB process sends a 40KB
message to P partner processes that precede it in the ring
(all processes in its ring are on different nodes) and receives
the messages sent by the P succeeding processes. After M
messages have been sent in this way, the benchmark sleeps
for B cycles, waits for all the MPI_Irecvs and MPI_Isends

to complete, and repeats the communication pattern.

Various settings of parameters P , M and B degrade network
capability to different extents. Thus, by performing multiple
experiments where a different configuration of CompressionB
is executed concurrently with a target software component

it is possible to measure the degradation in the component’s
performance on less capable switches. This corresponds to
future systems where the network performance is poorer rel-
ative to processor performance, as well as scenarios where
more application work is assigned to and contends for the
same network.

5.2 Switch Utilization of CompressionB
To quantify the fraction of switch capability that various
configurations of CompressionB use, we run it together with
ImpactB just like any other software component ImpactB
may measure. This measurement makes it possible to relate
performance degradation to the fraction of switch queue ca-
pability removed by CompressionB. The result is a high-level
description of application performance in terms of a generic
measure of network capability, the queue utilization fraction.

Our CompressionB+ImpactB experiments are executed us-
ing the same configuration as above, where we map 1 Im-
pactB and 1 CompressionB process on each socket, for 2 Im-
pactB and 2 CompressionB tasks per node. Figure 7 shows
the range of different queue utilization percentages that can
be achieved by all the considered variants of CompressionB
when run on Cab. Parameter P , the number of partner pro-
cesses, takes values 1, 4, 7, 14 and 17. Parameter B, the
number of cycles the benchmark sleeps, has values 2.5E4,
2.5E5, 2.5E6, 2.5E7. Finally, parameter M , the number of
messages sent in each round of communication, is either 1
or 10.

The data shows that main determinant of switch queue uti-
lization is the number of cycles the benchmarks sleeps, with
utilization decreasing with longer sleeps. Further, utiliza-
tion rises with increasing partner counts and message counts.
The effect of partner count is strongest for longer sleep times
while the effect of message count is strongest for shorter
sleep times. In total, we consider 40 different input configu-
rations, which allow us to cover switch queue utilizations be-
tween 26% and 92%. The broad range of queue utilizations
provided by these configurations enables us to precisely eval-
uate applications performance degradations due to reduced
switch capability.

We have also run similar experiments on Hera, considering
1, 4, 6, 8 and 11 partner processes and setting the other pa-
rameters to the the same values as we mention above. The
main determinant of switch utilization is again the num-
ber of cycles the benchmark sleeps. Also, we can see how
the switch is already using 75% of each capacity when 10
messages are sent and parameter B is 2.5E6, while the Cab
switch uses between 30 and 40% of each capacity to handle
the same traffic. That clearly indicates that Hera switches
have less capacity in absolute terms than the ones installed
in Cab.

5.3 Application performance impact due to re-
duced network capability

We used CompressionB to measure the relationship between
available network switch capability and the performance of
our target applications. Each experiment used the same
configuration as in Section 4, with 2 CompressionB processes
per node. On Cab we assigned 1 CompressionB process per



while (1 ) {
for ( partner =0; partner<P; partner++) {

for (mesg=0; mesg<M; mesg++) {
// Receive from same core ID on succeeding node
PMPI Irecv ( . . . , (my rank+task s pe r node ∗( partner+1))%comm size , . . . ) ;
// Send to same core ID on the preceding node
PMPI Isend ( . . . , (my rank−t a sk s pe r node ∗( partner+1)+comm size)%comm size , . . . ) ;
}
us l e ep (B) ;

}
MPI Waitall ( . . . ) ;

}

Figure 5: Pseudo-code of the CompressionB interference micro-benchmark
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Figure 7: Switch usage compression benchmark on Cab

socket, while on Hera we assigned 1 CompressionB process
to 2 of the sockets and did not assign a CompressionB pro-
cess to the other 2 sockets. The other cores were assigned to
the application or left idle. Figures 9 and 10 show the per-
centage performance degradation on Cab and Hera, respec-
tively, of FFTW, Lulesh, MCB and MILC (y-axis) as the
percentage of switch utilized by CompressionB changes across
its full range (x-axis) due to the use of different configura-
tion parameters. Performance degradation is computed as
Run time with interference - Run time with no interference

Run time with no interference
. The left

sub-figure shows the data with a linear y-axis and the right
sub-figure uses a logarithmic y-axis. For each application
we fit the data points with the best linear approximation to
highlight the overall trend of the results.

Reducing switch capability has the most effect on FFTW,
which runs more than 50% slower on Cab when even 40% of
the switch queue is utilized and up to 250% slower as utiliza-
tion reaches 92%. MILC is also significantly affected, run-
ning approximately 20% more slowly on Cab at 40% queue
utilization and over 100% more slowly at 92% utilization.
This is because both applications are very sensitive to the
latency of messages, meaning that if on average the queue is
40% full the stochastic nature of packet arrivals means that
there are many packets that arrive when the queue is very
long. Recall that the packet latency distributions shown
in Figure 3 have some high latency packets even when the
switch is idle. When the switch is partially utilized the frac-

tion of high latency packets can become considerable, sig-
nificantly degrading the performance of FFTW and MILC.

In contrast, Lulesh and MCB are significantly less affected
on Cab by reduction in switch capability. The performance
of Lulesh degrades by 8% at 50% queue utilization and 15%
at 92% utilization. MCB is almost completely insensitive to
queue utilization, slowing by no more than 3.5% across the
full utilization range.

Figure 10 shows the results from the same experiments on
Hera. The data shows that the performance of each ap-
plication degrades similarly on this platform. One major
difference is that FFTW’s performance doesn’t degrade as
significantly on Hera as on Cab for switch utilizations be-
low 90%. In contrast, MILC’s performance is even more
significantly degraded for these intermediate utilization lev-
els than it is on Cab. MCB and Lulesh as as insensitive to
interference as on Cab, except at almost 100% interference
where Lulesh performance degrades by 20%.

The above experiments make it possible to estimate the per-
formance of software components when executing on switches
with different capabilities. Specifically, to focus on a partic-
ular scenario it is necessary to choose the queue utilization
fraction that corresponds to the removal of the given amount
of switch capability and run the application with Compres-
sionB configured to emulate this utilization fraction.
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Figure 8: Switch usage compression benchmark on Hera
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Figure 9: Performance degradations suffered by real application in terms of switch queue utilization by
CompressionB availability in cab. In the left, the y-axis is expressed as a linear scale. In the right, it is
expressed as a logarithmic scale.

6. PREDICTION
Section 4 showed how to measure the application’s utiliza-
tion of switch resources by timing the latencies of individual
packets (the ImpactB benchmark) and inferring from this the
fraction of the switch’s internal queue that is utilized. Sec-
tion 5 then presented a way to emulate switches with reduced
capabilities by running concurrently with the application an
interference workload (the CompressionB benchmark) that
reduces the amount of switch capability available to the ap-
plication. Further, this section described a way to quan-
tify the amount of interference induced by CompressionB in
terms of the same queue utilization metric. We now show
how to combine these two experimental techniques to make
quantitative predictions about how the performance of mul-
tiple software components (application tasks or entire appli-
cations) will suffer when they are executed concurrently on
the same switch. Critically, our approach makes it possible
to make predictions for new combinations of software com-
ponents (number of combinations grows exponentially with

the number of components and polynomially in the number
of their configurations) based on experiments performed on
each component in isolation from the others (grows linearly
with the number of components).

Consider software components A and B. Impact experi-
ments conducted on A and B will result in quantities UA%
and UB% that measure the fraction of the switch queue
each component utilizes. Compression experiments on these
components produce mappings pA and pB that map queue
utilization fractions to the performance degradation in each
component. We then use the configurations of CompressionB
that also utilize UA% and UB% of the switch queue to model
the effects of A and B, respectively on other software com-
ponents with which they share a switch. We thus predict the
performance degradation of A when executed concurrently
with B to be pA(UB). Specifically, this means that A’s per-
formance will degrade as much when sharing the switch with
B as it did when it shared the switch with the configuration
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Figure 10: Performance degradations suffered by real application in terms of switch queue utilization by
CompressionB availability in cab. In the left, the y-axis is expressed as a linear scale. In the right, it is
expressed as a logarithmic scale.

of CompressionB that utilizes the same fraction of the switch
queue as B does. The converse prediction is made for B.
This analysis can be performed for any combination of appli-
cation tasks, their configurations (e.g. number of molecules
simulated or the size of their communication stencil) or even
multiple concurrently executing applications.

We evaluated the accuracy of this prediction algorithm by
running pairs of our target applications concurrently on the
same switch to observe whether the model correctly predicts
how much they degrade each other’s performance. In these
experiments each application was executed using the config-
urations used in the experiments reported in Sections 4 and
5. Specifically, for the experiments run on Cab with MILC,
FFTW and MCB we ran 4 processes on each socket, for a
total of 144 processes on the 18 dual-socket nodes connected
to one switch. Since Lulesh must run on cubic numbers of
processes, we ran 2 Lulesh processes on each socket on 16
nodes, for a total of 64 processes. In our Hera experiments,
we ran 2 processes of MILC, FFTW and MCB on each socket
for a total of 96 processes on the 12 4-way nodes connected
to one switch. We ran Lulesh ran 2 processes on each socket
across 8 nodes, for a total of 64 processes. This process map-
ping utilizes at most half the available cores, leaving enough
cores for two applications to run concurrently without shar-
ing cores. Our experiments include combinations where two
copies of a single application run concurrently on the same
nodes and switch, as well as combinations where two differ-
ent applications execute together. The former evaluates our
model’s accuracy on the use-case of HPC capability comput-
ing where different amounts of a single application’s work
may be assigned to a single switch. The latter accounts
for the use-cases more typical in cloud computing or HPC
capacity computing where multiple applications may share
a single switch, as well as applications such as ddcmd [17]
that run processes dedicated to molecular dynamics and pro-
cesses for FFT computations concurrently on different nodes
on the same network.

Figures 11 and 12 present the results of the 10 experiments

(4 experiments where each application was run with itself
and 6 experiments for different application pairs) executed
on Cab and Hera, respectively. The y-axis shows the per-
cent performance degradation of each application in each
pairing, while the x-axis shows each pairing X − Y . Since
experiments where two different applications are executed
concurrently result in two different performance degrada-
tions they are listed separately on the x-axis, for a total of
16 different degradation measurements. Specifically, each x-
axis label X − Y should be read “performance degradation
on application X when it runs concurrently with application
Y ”.

Our results show that overall our model has very good pre-
dictive capability on both systems. It clearly separates the
pairings that induce little performance degradation from
those that induce significant degradation. For the low-degradation
combinations the primary errors were that (i) the model pre-
dicts zero degradation while in reality performance degrades
by 3%-5%, (ii) it predicts a degradation that a few per-
cent higher or lower than reality (Cab: MILC with Lulesh
and MCB, Lulesh with MCB and MCB with MILC; Hera:
FFTW with MILC, Lulesh with FFTW and MCB with
FFTW) or (iii) the model predicts a notable degradation
where in reality it was small, as for MILC when co-executing
with MCB on Hera.

For combinations where performance degraded significantly
the model’s predictions were generally close to real obser-
vations. The only significant error was that the model pre-
dicted that the performance of FFTW when co-executing
with MILC on Cab would degrade significantly more than
it actually did. Although the model mis-predicted the exact
amount of degradation, it did correctly identify that in this
case performance degradation would be notable, since it was
actually > 10%.

7. CONCLUSION
In this paper we have shown the usefulness of proactive mea-
surements to analyze applications’ consumption of switch re-
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Figure 11: Performance predictions for combined workloads in Cab
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Figure 12: Performance predictions for heterogenous workloads in Hera

sources and to predict performance degradations when those
resources are shared with other workloads. This a very
important problem since high performance computing in-
frastructures typically run several applications on the same
time, all of them sharing the network. Our technique uses
two interferences that inject extra network workload. The
first detemines the fraction of the network that is utilized
by a software component (an application or an individual
task) to figure out the existence and severity of network
contention. The second aggressively injects network packets
while a software component runs to evaluate its performance
on networks with less capacity or when it shares network re-
sources with other software components. We then combine
the information from the two types of experiment to predict
the performance slowdown experienced by multiple software
components (e.g. multiple processes of a single MPI appli-
cation) when they share a single network. We have also
validated our approach by comparing the predictions we get
through our modeling and measurement techniques with real

measurements obtained when two applications run together
on the same switch. The overall model is fully generic and
can be applied to memory hierarchies as well file systems
by considering combinations of multiple queues and caches
via extensions of network tomography techniques [19]. A
new generation of performance analysis tools and techniques
focused on applications’ resource consumption rather than
simple low-level measurements that are not always action-
able can be developed from the ideas explained in these pa-
per.
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